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Abstract. The conventional Hartree and Hartree-Fock approaches for treating many-electron bound sys-
tems have been extended recently to positive energy scattering problems, in which both the bound and
continuum orbitals are determined by the requirement of full self-consistency. Serious consequences of such
a theory are that the target orbitals become energy dependent and the asymptotic boundary conditions
are satisfied only approximately, in lowest order. It is important therefore to test the theory for its con-
vergence under configuration mixing. This self-consistent field (SCF) theory for scattering has been tested
here for scattering from hydrogenic target as a model where the target function is determined dynamically.
Penetration of the projectile inside the bound target orbital is manifest through the SCF for the bound
state. Our results show that the theory converges to the correct amplitudes and to the exact boundary
conditions as more configurations are added. The use of the amputated functions and the weak asymptotic
condition (WAC) upon which the SCF theory is based, is justified as the WAC converges to the correct
limit. It is then applied to the positron-helium and electron-helium scattering systems where the helium
function is calculated simultaneously together with the scattering function. The resulting phase shifts and
the SCF target functions are compared with those obtained with the pre-determined target functions in
the conventional approaches.

PACS. 34.10.+x General theories and models of atomic and molecular collisions and interactions (including
statistical theories, transition state, stochastic and trajectory models, etc.) – 31.10.+z Theory of electronic
structure, electronic transitions, and chemical binding – 24.10.-i Nuclear-reaction models and methods

1 Introduction

The interpretation of atomic spectra and applications of
atomic spectroscopy to current problems in astrophysics,
laser physics, and thermonuclear plasma require a pre-
cise knowledge of atomic structure and collision dynam-
ics. Atomic systems to be analyzed are complex and
many approximate methods have been developed in the
past, among which the Hartree-Fock procedure [1] and its
relativistic and multiconfiguration extensions have been
most prominent. This self-consistent field (SCF) approach,
however, has been limited to treating only fully bound
state configurations. It is therefore worthwhile consid-
ering its extension to scattering problems. These meth-
ods have also been successfully applied to molecular sys-
tems as well as to some solid state and nuclear problems.
With currently available computers, atomic and molecular
structures are routinely calculated to very high accuracy
[2–6]. Several efficient computer packages are available,
and the wave functions generated by these programs are
often sufficiently accurate for the evaluation of various
transition matrix elements. The variational basis of the
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HF approach, often with minimum bounds on the ground
state energy eigenvalues, helps to obtain convergent re-
sults in many cases, both for the ground and low-lying
exited states. In all cases, however, the atomic systems
consist of bound, negative energy orbitals and the corre-
sponding wave functions are square-integrable (L2). This
L2 property is of course essential in deriving the SCF form
of the theory.

In the past, numerous attempts to extend the approach
to scattering problems involving continuum (positive-
energy) orbitals have been made [7–10], but, no corre-
spondingly satisfactory methods have been found until
very recently [11,12]. The principal difficulties in extend-
ing the theory are well-known: (i) the non-normalizability
of the continuum scattering function makes the SCF deter-
mination of the potentials inoperative, and (ii) the strong
asymptotic boundary condition which requires exact tar-
get internal wave functions for all the open (allowed) chan-
nels. These target functions are required in formulating
the scattering problem, prior to solving it. Various ap-
proaches have been tried to circumvent these difficulty
(i); for example, the complex energy treatment [13] forces
the scattering wave functions to decay asymptotically, and
the final amplitudes are obtained by analytic continuation.
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The complex coordinate method [14] similarly adopts the
decaying functions for the continuum orbitals. The con-
dition (ii) can be satisfied only approximately [15,16] in
practice.

A generalized Hartree-Fock (GHF) approach to colli-
sion systems was proposed [11] recently, in which the dif-
ficulties (i) and (ii) are removed and where all the orbitals
are treated on an equal footing in so far as the SCF re-
quirement is concerned. The non-integrability is removed
by introducing the amputated wave functions (AWF) in
place of the usual scattering functions. All the integrals in-
volved are then well defined. However, it is important to
distinguish this new approach from all the existing scat-
tering theories in that the “exact” asymptotic boundary
conditions are not specified; this condition is relaxed in the
generalized SCF theory (GSCF) in terms of a weak asymp-
totic condition (WAC). Since the requirement (ii) cannot
be met in practice, the question of how good these func-
tions should be naturally arises. The usual accuracy crite-
rion is that perhaps the bound cluster functions should be
“much better” than the desired accuracy of the scattering
amplitudes. By contrast, the GSCF approach considered
here treats all the orbitals, including the asymptotic ones,
self consistently simultaneously.

The new SCF theory was applied [11,12] earlier to the
single channel elastic scattering of positrons by hydrogen
below the positron pick-up threshold and electrons below
the first excitation threshold. In both of these cases, the
GSCF iterations converged well, and the solutions with
the use of the WAC and AWF were found to be stable.
Most encouragingly, in spite of the WAC, the GSCF phase
shifts are found to be comparable to the well-known close
coupling method [17], which has been widely applied to
electron/positron-atom scattering [18–20].

The GSCF theory depends critically on the two an-
satz, the AWF and WAC. In particular, their validity
depends on the WAC, which is a serious modification of
the original scattering problem. More precisely, the strong
boundary condition of requiring the exact target function
is relaxed by requiring instead a much weaker condition.
This is of course a fundamental change in the scattering
problem. To validate the GSCF theory, the two ansatz
mentioned above must be tested by showing that the SCF
approximate target wave function and the corresponding
energy approach the exact ones as more configurations are
added and also that the SCF phase shift approaches the
exact value. We first critically examine this question in the
cases of the well-known systems of electron-hydrogen and
positron-hydrogen scattering, where the target function is
known exactly and full scattering information is available
for comparison. Of course the target functions calculated
by the GSCF are different from the exact hydrogenic func-
tion and depend on the scattering energy.

Secondly, we apply the SCF theory for the first time
to the positron-helium and electron-helium scattering sys-
tems where neither the exact asymptotic conditions in
terms of the target functions nor the full scattering so-
lutions are known. Both the helium target function and
the scattering particle function are treated on equal foot-
ing as they are determined simultaneously in a fully self-

consistent way. Our results are then compared with several
previous calculations in which various approximate forms
of the helium target function were employed.

This is the first in a series of reports on the applica-
tions and extensions of the GSCF approach to collision
problems. As an important next step, the theory will be
extended to treat the ionization problem, where two or
more continuum electrons co-exist. This is the first seri-
ous challenge of the new approach, where very few viable
and systematic theories are actually available. As a re-
sult much current research activities are reported in re-
cent years. As apparent from the contents of this paper,
the GSCF theory is eminently suited for the ionization
problem.

The outline of this paper is as follows. Section 2 con-
tains a summary of the theoretical development of the
generalized Hartree approximation (GHA)/generalized
Hartree-Fock approximation (GHF) (in the presence of
exchange) for atomic collisions. Sections 3 and 4 are de-
voted to testing the theory by applying it to the hydrogen
target, scattering the incident projectile (positrons or elec-
trons). Sections 5 and 6 contain the first application of the
GHA and GHF theory to the helium atom in which the
target ground eigenstate is not known exactly. Finally, we
summarize the results and give concluding remarks.

It should be emphasized that the work reported here is
to demonstrate that the GHF is, under configuration mix-
ing, a valid theoretical approach to many-body scattering.
It is not the purpose of this study to obtain the exact re-
sult which is already available. This applicability of the
GHF will lead to cases which cannot readily be treated by
the existing methods.

2 Generalization of the Hartree
and Hartree-Fock methods to scattering

The conventional Hartree and Hartree-Fock approaches
have been developed for bound state configurations of
many electron ions, atoms, and molecules. For the ground
states, the variational nature of the theory provides an
important bound property, EHF

g ≥ Eg where Eg is the
ground state energy. The method has also been used in de-
scribing excited state configurations, although the bound
property is not present. The wave function for an N elec-
tron system is written in the lowest order HF approxima-
tion as

Ψ ' ΨHF = AΠψi ≡ A′Ψ−iψi (1)

for each orbital ψi and where Ψ−i are the (N − 1)-
electron clusters without the ith electron which are as-
sumed to be properly antisymmetrized within the clusters.
A is the antisymmetrization operator, defined by A =
(1/
√
N)
∑
ij Pij , where Pij is the permutation operator

for each electron pair ij, with the proper signs included.
For notational convenience, we combine the electron and
the orbital label. For example, ψi denotes a single-particle
orbital for electron i in state i. For simplicity, we omit
the complications which may arise from proper angular
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and spin coupling, often requiring more than one deter-
minant. The set of coupled nonlinear integro-differential
equations for the individual orbitals {ψi} is then given by

〈Ψ−i|H −Et|ΨHF〉−i = 0, i = 1, 2, . . . , N (2)

where 〈· · · 〉−i =
∫

dr1dr2 . . .dri−1dri+1 . . .drN . The HF
equations (2) determine the orbitals ψi. Another way of
deriving the Hartree-Fock equations (2) is via the varia-
tional principle. Since all the orbitals involved are bound
state functions, the {ψi} are square-integrable. Conse-
quently the integrations implied in equations (2) are fi-
nite. Thus, the HF single orbital equations (2) are mu-
tually coupled, nonlinear, and contain the self-consistent
mean field (SCF) for each bound electron i.

We now try to extend (2) to scattering problems in
which one of the electrons (or positrons) occupies a con-
tinuum orbital. Rather than developing the continuum
theory for complex atoms in a general way, we consider
two simple examples of positron-hydrogen and electron-
hydrogen scattering. This of course does not limit the ap-
plicability of the theory to more complex scattering sys-
tems. As will be clear below, the generalized SCF theory
(GSCF) contains several new elements to make it concep-
tually different from all of the conventional theories. So,
the simple example of positron-hydrogen scattering sys-
tem brings out the essential aspects of the theory more
clearly. The scattering energy is limited to the region be-
low the first pickup threshold for positronium formation
(no electron will be stripped off) and for the total angular
momentum L = 0. It is then a single channel scattering
problem, with no exchange effect. Since the hydrogen in-
ternal states are known exactly we are able to test the
continuum theory.

The scattering wave function Ψ satisfies

(H −E)Ψ = 0, H = Tr2 + h(r1) + V (3)

where r1 and r2 denote the electron and positron coordi-
nates, respectively, Tr2 is the kinetic energy operator for
the positron, and h = Tr1 + V1 is the target Hamiltonian,
where V1 is the attractive Coulomb potential between the
electron and the proton. The interaction potential between
the positron and the hydrogen target is V = V2 + V12,
where V12 < 0 is attractive. The asymptotic boundary
condition is required to fully specify the scattering prob-
lem posed by (3). We have asymptotically as r2 →∞

Ψ −→ ψ0(r1)u0(r2) (strong asymptotic condition) (4)

where

hψn(r1) = εnψn(r1), (5)

u0(r2) = s(r2) + c(r2)→ sin(kr2)
r2

+K0
cos(kr2)

r2
(6)

E = ε0 + ec (7)

where ε0 is the ground state energy of hydrogen, ec is
the kinetic energy of the incident particle defined as ec =
k2 in units of Rydberg where k is the continuum wave

number, and K0 is the reactance matrix defined as K0 =
tan δ0 where δ0 is the scattering phase shift. The scattering
equation (3) with the boundary conditions (4–7) defines
the problem. At r1 = r2 = 0, the boundary conditions
are as usual r1ψn(0) = 0, and r2un(0) = 0, for all n. The
form (4) with (5–7) will be called the strong asymptotic
condition.

The elastic scattering function in the generalized
Hartree approximation (GHA) in its lowest approxima-
tion is chosen as a product form

Ψ(r1, r2) ' ΨGHA = ψ(r1)u(r2) (8)

where u asymptotically behaves as in equation (6). We
obviously note that

〈Ψ |Ψ〉 = 〈u|u〉 −→ ∞. (9)

Hence, any attempt to construct the set of equations (2)
is not possible. One is then forced to pre-determine the
ψ since the ψ equation contains the difficulty (9). Fur-
thermore, the strong asymptotic condition (Eq. (4)) with
equation (6) requires that the exact cluster function ψ0

must be known before solving equation (3). Of course this
can only be done exactly in the case of the hydrogen atom.
Hence, the question of how good these cluster functions
should be in general cases and how they affect the scatter-
ing amplitudes arises. In fact, the sensitivity of the scat-
tering amplitudes to the accuracy of the cluster functions
has been discussed [21]. Accuracy of the cluster function
ψi in (4) must be at least an order of magnitude greater
than the scattering function u. Precise criteria for this ar-
bitrariness are not known.

The standard procedure for deriving a set of SCF
Hartree equations is

〈ψ|H −Et|ΨGHA〉r1 = 0 (10)

〈u|H −Et|ΨGHA〉r2 = 0, (11)

where 〈· · · 〉r =
∫
. . .dr. It is evident from (9) that the sec-

ond equation (11) is ill-defined. In addition the solution of
equation (11) will give an approximate bound state func-
tion with approximate energy εbt. Since the total energy
E is pre-fixed, this in turn makes the corresponding inci-
dent energy ec vary, as ec ' E−εbt. Therefore, the strong
asymptotic condition cannot be imposed exactly in a SCF
approach.

In order to resolve these difficulties we first write u as

u = s+ gV Su ≡ s+ gX, (12)

where

[Tr2 − ec] s = 0, (13)

[Tr2 − ec] g = −δ (r2 − r′2) , (14)

and

X(r2) ≡ (ec − Tr2)u = V Su (AWF), (15)
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where V S is the SCF potential function for the continuum
orbital and in the present example V S is short ranged.
This implies that X is a decaying function, hence it is
square integrable: 〈X |X〉r2 <∞.

The GHA is formulated by introducing two ansatz:
(a) the amputated function X is to replace u in equa-
tion (11). This replacement is based on the fact that the
essential dynamical information carried by the scattering
function u is in X and not in the oscillatory tail part repre-
sented by the asymptotic form of u. On the other hand, the
tail gives rise to the non-normalizability difficulty. There
may be other ways of constructing a square integrable
function, but the AWF cleanly gets rid of the troublesome
part and yet retains the essential physical information.
The choice (15) also allows to maintain the (hermiticity)
symmetry of the resulting set of coupled equations. The
new set of equations may then be written as

〈ψ|H −E|ΨGHA〉r1 = 0, (16)
〈X |H −E|ΨGHA〉r2 = 0. (17)

The coupled equations (16, 17) may be reduced to the
following explicit forms[

Tr2 − ec + V S + 〈h− εbt〉r1

]
u(r2) = 0 (18)

[h+ VX − εbt − 〈X |X〉r2 ]ψ(r1) = 0 (19)

with

V S(r2) ≡ 〈ψ|V |ψ〉r1

〈ψ|ψ〉r1

, (20)

〈h− εbt〉r1 =
〈ψ|h− εbt|ψ〉r1

〈ψ|ψ〉r1

, (21)

VX(r1) ≡ 〈X |V |u〉r2

〈X |u〉r2

, (22)

and

〈X |X〉r2 =
〈X |ec − Tr2 |u〉r2

〈X |u〉r2

≡ EXX . (23)

Note that

VX → EX = 〈X |V2|u〉r2 as r1 →∞. (24)

We also set E = ec + εbt in equations (18, 19), and εbt +
EXX − EX ≡ εdt which is the eigenvalue of (19). The ec

dependence of εbt arises through this relationship.
Furthermore, equation (18) contains a constant

〈h− εbt〉r1 which modifies the asymptotic energy ec. This
is of course undesirable and we require that

〈h− εbt〉r1 = 0, weak asymptotic condition (WAC).
(25)

As we will show below, this is not an arbitrary condition
imposed on the wave function ψ, but is a consequence
of the full SCF theory. This weak asymptotic condition
(WAC) allows us to maintain the pre-set energy ec. It is
roughly equivalent to a simple “node counting” ψ, as in
the usual HF procedure.

The GHA coupled equations can then be written as[
Tr2 + V S − ec

]
u = 0 (26)[

Tr1 + V B − εdt

]
ψ = 0 (27)

with

V B = (VX −EX) + V1 (28)

and

εbt +EXX −EX ≡ εdt (29)

where εdt is the eigenvalue of (19).
It is important to point out that ψ satisfies (27) with

a very strong potential V B � V1 and a pseudo-binding
energy εdt. The actual energy of ψ is, however, shifted
by (29) in such a way that εbt is expected to be quite
close to the actual energy of the hydrogen 1s electron,
ε1s = −1Ry.

The coupled set (26, 27) gives a self-consistent treat-
ment of the scattering problem, where both the bound and
the scattering state orbitals are treated on an equal foot-
ing and calculated self-consistently. V S and V B are the
self-consistent field potentials for u and ψ, respectively.
Evidently, V B has never been derived before, because of
the difficulty (9).

For the electron scattering, the exchange effect is in-
corporated without difficulty. The actual form of the equa-
tions is similar to equations (26–28). We illustrate the
SCF theory in the presence of exchange by considering the
simple example of single-channel elastic electron-hydrogen
scattering for the case of zero total angular momentum,
L = 0, and scattering energy, ec, below the first excita-
tion threshold, i.e., the total energy E: −1.0Ry < E <
−0.25Ry. The elastic scattering function in the general-
ized Hartree Fock approximation (GHF) in its lowest order
is chosen as

Ψt =
ψ(1)u(2)± ψ(2)u(1)√

2
(30)

where ± correspond to the spin eigenstates (S = 0 or 1).
The coupled set is given by[

T2 + V S − ec

]
u(2) = ±Ku(2) (31)[

T1 + V B − εdt

]
ψ(1) = ±Kψ(1) (32)

where the exchange terms Ku and Kψ are written as

Ku(2) = ψ(2)
∫
ψ∗(1)[H −E]u(1)d1, (33)

Kψ(1) =
u(1)

∫
X∗(2)[H −E]ψ(2)d2∫
X∗(2)u(2)d2

, (34)

εdt ≡ εbt −EXX −EX , (35)

and where the amputation of u results in the form

X = g−1u = V Su∓Ku. (36)
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Aside from the fact that X now carries one extra term,
Ku, the formalism remains the same as in the general-
ized Hartree case. In general we can write the Generalized
Hartree Fock (GHF) equations as follows

〈Ψ−i|H −Et|Ψt〉−i = 0 for i = continuum orbital
(37)

〈X−j |H −E|Ψt〉−j = 0 for j 6= i (38)

and where X−j = (ec − Ti)Ψ−j . In this notation the Ψ−i
do not contain the continuum orbital i, while all the Ψ−j
with j 6= i contain the continuum orbital i explicitly (this
form is only symbolic, because the amputation must be
done on the orbital i, but of the exchanged coordinates).

We emphasize that the self consistent field (SCF) for-
mulation given above, that is the GHA (without exchange)
and the GHF, are valid if the two ansatz, AWF and WAC,
can provide the correct amplitudes when more config-
urations are added. The convergence of the asymptotic
boundary condition is therefore the critical test of the
theory. This is demonstrated in the next two chapters by
adding more than one (closed channel) term to Ψt as well
as a mixture of other bound state configurations.

3 Positron-hydrogen scattering by GHA

The main purpose of this and the next section is to test
the GSCF theory by adding configurations.

We first solved the set of coupled equations with the
GHA wave function of the scattering system, Ψ(1s̃), cho-
sen in its lowest approximation

Ψ(1s̃) ' ψ̃1s(r1)ũ1s(r2). (39)

The 1s̃ denotes the target state evaluated within the GHA
and is different from the exact 1s function, where ψ̃1s and
ũ1s are calculated by the GHA. We name it configura-
tion 1s̃.

The iterative procedure proceeded as follows: to start
the iteration, we arbitrarily choose ψ̃1s = ψ1s where ψ1s

is the ground state wave function of the hydrogen atom.

1. The potential V S
1s,1s(r) is evaluated. In the zeroth it-

eration this simply gives the static potential denoted
as V st for the scattering function ũ1s.

2. We then solve for ũ1s and the corresponding phase
shift δGHA is evaluated in accordance with (6), for the
scattering energy ec = k2 in units of Ry.

3. The amputated function, X , is then evaluated:

X1s(r) =
(
−T (r) + k2

)
ũ1s(r) = V S

1s,1s(r)ũ1s(r)

4. The effective potential V B
1s,1s is evaluated and an esti-

mate of the eigenvalue εdt is obtained.
5. Equation (19) is solved for ψ̃1s and εdt. The GHA bind-

ing energy of the target hydrogen, εbt, is then evalu-
ated via equation (29).

Fig. 1. (a) Comparison of the bound state function in the
present GHA (solid line) with the undistorted 2s wave function
(dotted line). (b) Comparison of the bound state function in
the present GHA (solid line) with the undistorted 3s wave
function (dotted line).

6. The phase shift δGHA and εbt are then compared with
the values obtained in the previous iterations. If the
changes are larger than a preset limit, we return to step
1 of the iteration cycle and repeat the procedure until
the method converges. In all cases treated, at most five
iterations are required to obtain a convergence of one
part in ten thousand.

We also calculated the excited state scattering using
the same GHA code by simply guessing the approximate
initial energy values for the 2s and 3s. The solutions au-
tomatically converged to the specified asymptotic values
as long as the initial choice was close to one particular
energy. The converged energies for the bound electron are
close to one of the −(1/n2)Ry, (−0.2246 and −0.0994 in
Rydberg for 2s and 3s target respectively) and the corre-
sponding wave functions have the correct number of nodes
associated with the particular n. This is shown in Fig-
ures 1a and 1b. None of these functions are exact, however,
as they are determined by self-consistency. The only way
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Fig. 2. Plot of the amputated function, X, for the 1s (solid
line), 2s (dashed-dotted line), and 3s (dashed-dot-dotted line)
configuration.

to confirm that the calculated wave function corresponds
to that of the desired channel is to count the number of
nodes of the wave functions. This is in fact the same be-
havior we encounter in the bound state calculation by the
conventional HF procedure; a bad initial guess at the bind-
ing energy allows drift in the calculated values to some
other n states of the same symmetry. The amputated func-
tions corresponding to 1s, 2s, and 3s configurations are
plotted in Figure 2 showing that they extend further as
the target orbital principal quantum number increases. We
do not pursue this interesting aspect of the GHA approach
any further here because, for excited target scattering we
have to include all the open channels with channel bind-
ing energies greater than that particular excited state, and
this requires a further generalization of the GHA theory.

Next, we add the closed channel configurations∑nmax
n=2 nl where nmax = 2 to 4, 2s̃, or p̄ to configuration

1s̃. In configuration nl, we use the exact wave function
of the hydrogen atom in quantum state nl, and in con-
figuration p̄ we use a pseudo-state wave function for the
hydrogen atom of the form rψp̄ ∼ r2(1 + r/2) exp(−r).

During the iteration cycle, we force orthogonality be-
tween ψ̃1s and ψns to ensure that no spurious tails remain
asymptotically. As a test for our numerical code we set
ψ̃l = ψl, for which we recovered the exact numerical re-
sults of the close coupling approximation (CCA) [19]. We
dropped constant terms of the form 〈X1s|h2 − k2

n|un〉 for
n 6= 1, which appear on the right hand side of the ψ equa-
tion to ensure that no spurious tails are retained asymp-
totically. These constant terms are small. These terms
represent the overlap between the two amputated wave
functions X1s and Xn =

(
h2 − k2

n

)
un. To cleanly elimi-

nate them a Lagrange multiplier must be used, in analogy
with the bound-state HF.

Calculated phase shifts and the corresponding energies
of the GHA approximate target function of the present
theory in different multiconfiguration approximations are
presented in Table 1. Also presented for comparison are
the phase shift results of the close coupling approxima-
tion, the phase shifts obtained by including all of the vir-

Table 1. We display the phase shift values in radians for the
hydrogen-positron scattering case calculated with the GHA
formalism, δGHA, with various configuration mixing and the
corresponding energies εbt, in units of Rydberg. Also displayed
are phase shifts calculated in the close coupling approximation
δCCA, phase shifts obtained by including all the virtual s ex-
cited states, δs, and the phase shifts given by [22] which are
considered to be “exact” δex at ka0 = 0.2 and 0.4, where ka0

is the continuum wave number.

(a) kca0 = 0.2 δCCA δGHA εbt(Ry)

1s −0.1145 −0.0648 −0.9724
1s+ 2s −0.1109 −0.1021 −1.049
1s+ 2s+ 3s −0.0426 −0.1030 −1.043
1s+ 2s+ 3s+ 4s −0.1035 −1.036

1s+ 2s̃ −0.0847 −1.005

all s −0.1051 (−1.0000)

1s+ 2p −0.0458 −0.0337 −1.011
1s+ 2p+ 3p −0.0291 −1.009
1s+ 2p+ 3p+ 4p −0.0282 −1.006
1s+ p̄ 0.0458 −1.017
exact +0.188

(a) kca0 = 0.4 δCCA δGHA εbt(Ry)

1s −0.2181 −0.1246 −0.9723
1s+ 2s −0.2110 −0.1769 −1.034
1s+ 2s+ 3s −0.2095 −0.1845 −1.031
1s+ 2s+ 3s+ 4s −0.1871 −1.029

1s+ 2s̃ −0.1637 −1.017

all s −0.2000 (−1.0000)

1s+ 2p −0.1531 −0.1103 −1.023
1s+ 2p+ 3p −0.0963 −1.012
1s+ 2p+ 3p+ 4p −0.0938 −1.009
1s+ p̄ −0.0324 −1.011
exact +0.120

tual s excited states, δs, and the phase shifts obtained by
Schwartz [22], δex. His results are considered to be the best
existing values of s-wave elastic scattering phase shifts. In
his approach he used an extensive variational method with
many parameters in the trial function.

In Figure 3a, we show a plot of the GHA effective
potential, V S, seen by the continuum state function in
configuration 1s̃ and the static potential V st versus Bohr
radius at ka0 = 0.5, where ka0 is the continuum wave
number. This figure shows that potential V S is deeper
but of shorter range than the static potential. This may
explain why the GHA phase shifts are higher than those
of the static case (one term kept in the expansion).

The deviation in the target binding energy ∆ε is plot-
ted versus ka0 in Figure 3b, where ∆ε = εbt − εb with
εb = −1.0Ry. The smallness of ∆ε shows that the weak
asymptotic condition (WAC) still places strong enough
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Fig. 3. (a) Plot of the GHA potential (dashed line) and the
static potential (solid line) for the continuum function at ka0 =
0.5. (b) Plot of the strong energy dependence of ∆(εbt − εls).
For details see text.

constraint on the solution to eventually lead to the cor-
rect boundary condition.

In Figure 4a, we show a plot of the GHA effective po-
tential, V B, seen by the bound state function in config-
uration 1s̃ with the pure Coulombic potential V1 given
by V1 = −2/r1 at ka0 = 0.5. Figure 4a shows that for
r > 3a0, V B is almost twice the Coulombic potential V1.
This is the most striking feature of the SCF theory. This
SCF potential for the target electron during a collision has
only recently been displayed [11,12]. This can be under-
stood from the fact that when the electron is far away from
the proton core, which means that the positron has pene-
trated into the inner region of the electron orbit, the target
electron feels the Coulomb field of two positive charges.
As a result, the GHA approximate target wave function
is pulled in by comparison to the hydrogen target func-
tion. Moreover, the amount of distortion caused by the
scattering positron is energy dependent. This is shown in
Figure 4b at ka0 = 0.2 and 0.6. Nevertheless, the final
binding energy εbt of the GHA target function and the

Fig. 4. (a) Comparison of the Coulombic potential (solid line)
and the GHA potential (dashed line) for the bound electron
at ka0 = 0.5. (b) Comparison of the exact (solid line) and the
GHA hydrogen 1s wave function at ka0 = 0.2 (dashed line)
and 0.6 (dashed-dotted line).

corresponding wave function ψ̃1s do not differ greatly from
those of the ground state hydrogen.

Table 1 shows that as we add the ns configurations to
the total scattering function, such as 2s, 3s, 4s states, the
binding energy of the GHA approximate target function
approaches 1Ry. Moreover the scattering function and the
corresponding phase shift approach the exact value of the
all-s virtual exited states as expected. We plot, in Fig-
ure 5, the difference between the converged GHA target
wave function, ψ̃(i)

1s , where (i) = 1s̃, 1s̃+ 2s, 1s̃+ 2s+ 3s,
1s̃ + 2s + 3s + 4s and the exact hydrogen wave function
ψ1s versus r, where r is in units of Bohr radii. One can see
that as we add the 2s, 3s, 4s states the ψ̃1s target wave
function approaches that of hydrogen ψ1s. The phase shift
for the 1s̃ configuration, as shown in Table 1, was a bit
high, but the added channels systematically brought it
to all the virtual s excited states, δs, as more ns config-
urations are added to the scattering wave function Ψ of
the scattering system. The convergence rate toward the
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Fig. 5. Plot of the difference between the exact wave function
and successively converged ones by configuration mixings in
the GHA: 1s (GHA) + 2s (dashed line), 1s (GHA) + 2s + 3s
(dashed-dotted line), 1s (GHA) + 2s+ 3s+ 4s (plus-dash-dot-
dotted line), and 1s (GHA) + 2s (GHA) (dashed-dot-dotted
line).

exact phase shift values was rather slow and is also shared
by the CCA method. We then let the 2s hydrogen wave
function relax in the SCF calculation. The converged GHA
phase shift as well as the corresponding binding energies
are shown in Table 1, indicating that the GHA binding en-
ergy converges much faster to the correct value than that
of the previous added ns configurations. Also, as shown
in Figure 5, ψ̃(1s̃+2s̃)

1s ,approaches ψ1s faster than the pre-
vious cases. This is not surprising since 2s̃ is equivalent
to adding a large number of ns terms to configuration 1s̃.
The converged GHA results, when np configurations are
added to configuration 1s̃, are also presented in Table 1.
These results also show as in previous configurations that
the present theory converges to the correct value as more
np configurations are added. When the pseudo-state p̄ was
added to 1s̃, we recovered most of the long range effects
as in the case of the close coupling approximation.

The above results further demonstrate that the use of
the weak asymptotic condition and the use of amputated
functions are, in this case, valid and effective.

4 Electron-hydrogen scattering by GHF

We have demonstrated the validity of the GHA formula-
tion (without exchange) in the case of positron-hydrogen
scattering by showing its convergence by including many
configurations. We now turn to explore electron-hydrogen
scattering and the effects of exchange on such a system
as more configurations are added. This system has been
studied extensively using varying approaches [19–23]. In
the case of CCA, the singlet state recovers somewhere be-
tween 80% and 90% of the polarization effect using only
the static approximation. To account for the rest of the
polarization, one presumably must include higher angu-
lar momentum states. In the case of the triplet state, the
static approximation gives a value within 1 to 2% of the
exact value.

In this work, we do not concentrate on pursuing the
full polarization effects in the singlet case. Our goal is to
investigate how well this theory can explain the physics of
such a system without violating the asymptotic condition.
The electron-hydrogen system is a rich and robust system
and provides an excellent starting point for testing the
new theory.

We first solved the set of coupled equations with the
GHF wave function of the scattering system, Ψ(1s̃), chosen
in its lowest approximation:

Ψ(1s̃) ' ψ̃1s(r1)ũ1s(r2)± ψ̃1s(r2)ũ1s(r1). (40)

The 1s̃ denotes the target state evaluated within the GHF
approximation. We name it configuration 1s̃.

The term∫
r′2dr′X(r′)

(
+T (r′)− 2

r′
− εbt

)
ψ̃1s(r′) (41)

is dropped to ensure orthogonality between X and ψ̃. This
way the spurious long range contribution to the inhomo-
geneous term of equation (32) is not present. This term
is checked at the end of each iteration cycle. It is of the
order of 0.1 in the 1s̃ configuration and approaches zero
as more configurations are added (of the order of 10−4).
To completely remove it, however, a Lagrange multiplier
must be used as in the Hartree-Fock case for bound state
type systems.

For the 1s̃ configuration the iterative procedure pro-
ceeded as follows.

1. First we arbitrarily choose ψ̃1s = ψ1s and εbt = −1Ry.
The potential V S

1s,1s is evaluated. Next, we solve for
the scattering function ũ1s by adopting a variety of
techniques which will be discussed below. This gives
the phase shift δGHF.

2. The amputated function X (r2) is evaluated using the
scattering function ũ1s calculated above (in 1.).

3. The effective potential V B and an initial estimate of
εdt as well as the exchange term are then evaluated.
Next we solve for ψ̃1s and the corresponding energy
self-consistently. The correct binding energy is then
calculated εbt = εdt −Ex.

4. The full iteration cycle is then completed. If the result-
ing energy and the phase shift δ from ũ are not within
the small allowed change from the previous iteration
values, then we go back to step 1. and repeat the cycle
again until self-consistency is reached within some pre-
set tolerance. This way, both the target wave function
ψ̃1s with its binding energy εbt and the scattering func-
tion ũ1s with the phase shift δGHF are simultaneously
determined.

In the presence of exchange, the mathematical prob-
lem involves the solution of a system of coupled integro-
differential equations. Since the exchange potential is not
separable, non-iterative procedures are not possible. For
the scattering functions, we adopt a straightforward itera-
tion procedure using the Born iterative scheme where the
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free Green’s functions are used. This method fails to con-
verge for k . 0.3 in the symmetric case and k & 0.6 in the
antisymmetric case.

To overcome this divergence, we developed a new ap-
proach which we intend to publish in the future. In this
method, the exchange term is decomposed into an infinite
number of separable terms using the method of singular
value decomposition (SVD). Hence, we are able to dimin-
ish the effect of the exchange term by subtracting from
it a larger number of terms contained in the SVD. We
then iterate over the remaining part of the kernel using
the non-free Green’s function scheme.

We adopt the same energy matching scheme as in the
positron-hydrogen case when solving for the bound state
functions and their corresponding eigenvalues. An alter-
native approach that we adopt when convergence is not
achievable, is to expand ψ̃ in some known basis set that
satisfies the same boundary conditions as ψ̃. In the elec-
tron case, we naturally use the Laguerre polynomials as
the suitable basis set. As a result the integro-differential
equation of ψ̃ is transformed into a set of algebraic equa-
tions. Retaining up to ten Laguerre polynomials, in this
case, is sufficient to produce an accurate ψ̃ and its corre-
sponding energy εbt.

As in positron-hydrogen scattering, we force orthogo-
nality between ψ̃1s and ψns to ensure that no spurious tails
remain asymptotically and also dropped constant terms
of the form 〈X1s|h2 − k2

n|un〉 for n 6= 1, which appear on
the right hand side of the ψ equation to ensure that no
spurious tails are retained asymptotically. These constant
terms are small as in the e+ H case.

The converged phase shifts of configuration 1s̃ cal-
culated without the effect of exchange, δGHA, together
with the static approximation (without exchange), δST,
are presented in Table 2. In this case the GHF formalism
is equivalent to that of GHA. Table 2 shows that again, as
in the positron-hydrogen scattering case, the GHA phase
shifts are quite high. The converged GHF phase shifts for
the singlet and triplet states in electron-hydrogen scatter-
ing, δGHF, are also presented in Table 2, together with
the static (with exchange), δCCA, values both for singlet
(S = 0) and triplet case (S = 1). Table 2 shows that when
the exchange terms are kept in the ũ equation the enhance-
ment in δGHA is completely gone. This may be understood
from the symmetry (or antisymmetry) of the wave func-
tions. When the projectile penetrates the bound orbital it
becomes the new “inner core” electron because of the in-
distinguishability of their wave functions and hence does
not change any of the physics. The GHF phase shifts and
those of the static with exchange are comparable. This is,
of course, a very encouraging result.

The binding energies of the GHF approximate target
function are presented in Table 2. They are very close to
the exact values. This small variation in the energy in-
dicates that the WAC places a strong constraint on the
solution to eventually lead to the correct boundary con-
dition. The effective potential for the bound orbitals is
nearly one half of the Coulomb potential, for r > 3a0.
This large deviation is apparently caused by the penetra-

Table 2. We display the phase shift values δ in radians for
the hydrogen-electron scattering case calculated in the various
approximations for the singlet and triplet states. ST = phase
shifts obtained in the static case without exchange (only the
ground state of hydrogen is kept in the expansion). GHA =
phase shift obtained with the present theory without exchange.
CCA = close coupling approximation where the exact hydro-
gen functions are used. GHF = phase shift obtained in the GHF
approximation, where both the target function and the scatter-
ing function are calculated simultaneously in a self-consistent
way. EX = the exact phase shifts obtained by Schwartz [22].
All s = phase shifts obtained by including all the virtual s ex-
cited states. The GHF values are very close to that of CCA,
both in S = 0 and S = 1. εbt is the binding energy of the
approximate GHF target function and ka0 is the continuum
wave number.

ka0 = 0.2

S = 0 δST δGHA δCCA δGHF εbt(Ry)

1s 0.9725 1.609 1.871 1.868 −0.973
1s+ 2s 1.878 1.877 −1.002
1s+ 2s+ 3s 1.878 −1.001
all s 1.897
exact 2.067 (−1.000)

S = 1
1s 2679 2.677 −0.993
1s+ 2s 2.680 2.678 −1.011
1s+ 2s+ 3s 2.678 −1.009
all s 2.679
exact 2.717

ka0 = 0.4

S = 0 δST δGHA δCCA δGHF εbt(Ry)

1s 1.058 1.371 1.239 1.236 −1.043
1s+ 2s 1.257 1.256 −1.013
1s+ 2s+ 3s 1.257 −1.008
all s 1.270
exact 1.415 (−1.000)

S = 1
1s 2.257 2.256 −1.022
1s+ 2s 2.258 2.257 −1.017
1s+ 2s+ 3s 2.257 −1.009
all s 2.258
exact 2.294

tion into the target cloud by the projectile electron. This
is illustrated in Figure 6a. The GHF approximate target
wave function ψ̃1s turns out to be close to the exact one.
It is slightly pushed out, however, by comparison to the
ground state of hydrogen ψ1s. This can be understood
from the increase in the range of the effective self consis-
tent potential as seen by the target electron. This effect
is only attainable with this theory and is due mainly to
its self-consistent nature. These types of effects have never
been observed before and are being presented here for the
first time. This effect is illustrated in Figure 6b.
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Fig. 6. (a) Comparison of the Coulombic potential (dashed
line) and the GHF potential (solid line) for the bound elec-
tron at ka0 = 0.4. (b) Comparison of the exact (dashed line)
and the GHF (solid line) for the hydrogen 1s wave function at
ka0 = 0.4.

Table 2 shows that as we add the ns configurations to
the total scattering function, such as 2s and 3s states, the
binding energy of the GHF approximate target function
approaches −1Ry. Moreover the scattering function and
the corresponding phase shift approach the exact value of
the all-s virtual exited states as expected. We plot, in Fig-
ure 7, the difference between the converged GHF target
wave function, ψ̃(i)

1s , where (i) = 1s̃, 1s̃+2s, and 1s̃+2s+3s
and the exact hydrogen wave function ψ1s versus r, where
r is in units of Bohr radii. One can see that as we add the
2s and 3s states the ψ̃1s target wave function approaches
that of hydrogen ψ1s. The phase shift for the 1s̃ config-
uration, as shown in Figure 8, converges monotonically
toward the exact value of all virtual s excited states.

Based on the above results and those of the positron-
hydrogen scattering, we conclude that the new self-
consistent approach to scattering system is proven to con-
verge to the correct asymptotic values as more terms are
added and is effective as well. Hence, the use of ampu-

Fig. 7. Plot of the difference between the exact wave function
and successively converged ones by configuration mixings in
the GHF: 1s (GHF) (solid line), 1s (GHF) + 2s (dashed line),
and 1s (GHF) + 2s+ 3s (dashed-dotted line).

Fig. 8. Comparison of the singlet exact phase shift (long
dashed), and all s (solid) with those calculated with successive
GHF approximations as a function of ka0: 1s (static) (dashed-
dotted line), 1s (GHF) (dotted line), 1s (GHF) + 2s (dashed-
dotted-line), and 1s (GHF) + 2s+ 3s (dashed-dot-dotted line).

tated functions along with the weak asymptotic condition
are justified. So, knowing the exact asymptotic boundary
condition is no longer necessary in the present formalism.
Moreover, the scattering and the bound parts of a scat-
tering system are no longer separated, as they are treated
here on equal footing in a fully self consistent way. Thus,
the question of how good the cluster functions have to be
for composite targets in order to specify the asymptotic
boundary condition may no longer be raised. Most im-
portantly, in this formalism the scattering problem is well
defined unlike in the other approaches where the asymp-
totic boundary conditions have to be satisfied exactly. Of
course, in practice this is only possible for the hydrogen
atom.
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5 Positron scattering from helium by GHA

The scattering of low energy positron by helium is the
subject of continuing interest, both theoretically and ex-
perimentally [24–27]. In general the major difficulty asso-
ciated with the scattering by atoms other than hydrogen
is that the asymptotic boundary condition requires the
exact target functions which are very difficult to evalu-
ate. Such bound state functions are either not available
in many cases, except in very crude forms, or too cum-
bersome to use. Naturally the question arises as to what
extent such approximate cluster functions affect the scat-
tering amplitudes. This is not well understood because the
scattering parameters, such as the phase shift, depend on
the cluster functions in a very complicated way.

The most successful method in treating many-particle
systems is the close coupling approximation (CCA). Even
though it produces some of the most accurate scattering
amplitudes, it suffers from the same problem that afflicts
most present theories. Namely, one is faced with the prob-
lem of generating, a priori in an accurate form, the inter-
nal cluster wave functions. The close coupling method was
first used by Wardle [28] to investigate positron-helium
scattering below the positronium formulation threshold.
She has performed the calculation with and without the
effect of virtual positronium formation. In both models,
she used two approximate (the Hylleraas and Hartree-
Fock) helium ground state wave functions. In the static-
virtual positronium formation, the calculated scattering
phase shifts differ qualitatively with different approximate
helium target wave functions. As of now, there are no crite-
ria which determine the effects of the inaccuracies inherent
in collisions involving all atoms except hydrogen.

Hahn [10] critically examined this problem by parame-
trizing the ground state of the hydrogen atom in a nonlin-
ear way. This model wave function of hydrogen was then
used in the case of single channel elastic scattering of elec-
trons by a hydrogen atom. The phase shifts in the case of
the static approximation depend strongly on the static po-
tential and exchange kernel. These potentials were found
to be very sensitive to the target function. His test results
showed that the static phase shift deviated from its cor-
rect value as the ground state of the hydrogen atom was
slowly modified. This suggests that in order to obtain re-
liable scattering amplitudes, the target functions have to
be improved in the case of target atoms that contain more
than one electron, to an accuracy at least an order of mag-
nitude better than that desired for the scattering function.

In the present GHA formalism, the asymptotic condi-
tions that require the exact knowledge of the target func-
tion are not assumed to be strictly imposed, even in the
hydrogen case. Since it has been tested and shown to be
effective in the positron/electron-hydrogen scattering, we
attempt to apply it for the first time to the single channel
positron-helium scattering. Both the scattering wave func-
tion and the helium wave function are treated in a fully
self-consistent way. The resulting wave functions and the
corresponding scattering phase shifts are then uniquely
determined, and can be improved simultaneously by mul-
ticonfiguration mixing.

In atomic units, the Schrödinger equation for a helium
atom and one free positron can be written as[
−
(
∇2

1 +∇2
2 +∇2

3

)
− 4
r1
− 4
r2

+
4
r3

+
2
r12
− 2
r13
− 2
r23
−E

]
Ψ(r1, r2, r3) = 0, (42)

rij = |ri − rj |, (43)

where E is the total energy of the system in units of
Rydberg. r1, r2 and r3 are the coordinates of the two
atomic electrons and the incident positron, respectively.

We apply the GHA to positron He elastic scattering
with L = 0. Only one single channel is considered, lim-
iting the scattering energy to be less than 15 eV, for en-
ergies below the pickup threshold. The wave function of
the scattering system can then be written in GHA lowest
approximation as

ΨL=0,S=1/2(r1, r2, r3) ' ψ̃(r1)ψ̃(r2)ũ(r3) (44)

where α and β are the spin up and spin down states. For
this case the WAC to be satisfied for this case is〈
ψ̃(r1)ψ̃(r2)

∣∣∣∣∣− (∇2
1 +∇2

2

)
− 4
r1
− 4
r2

+
2
r12
− εbt

∣∣∣∣∣ψ̃(r1)ψ̃(r2)

〉
12

= 0. (45)

where

〈· · · 〉12 =
∫∫

dr1dr2 . . .

The radial differential equation for ũ is obtained by multi-
plying equation (42) by ψ̃(r1)ψ̃(r2) then integrating over
the radial coordinates r1 and r2 and all the angles. The ũ
equation is given as[

T (r3) + k2 − V S(r3)
]
ũ(r3) = 0 (46)

where

V S(r3) =
4
r3
− 4
r3

∫ r3

0

r′2dr′ψ̃(r′)ψ̃(r′)

−
∫ ∞
r3

r′2dr′ψ̃(r′)
4
r′
ψ̃(r′). (47)

Similarly, the radial differential equation for ψ̃ is obtained
by multiplying equation (42) by ψ̃(r2)X(r3) then integrat-
ing over the radial coordinates r2 and r3 and all the angles.
The ψ̃ equation is given by[

T (r1) + εdt − V B(r1)
]
ψ̃(r1) = 0 (48)
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where

V B(r1) =
−4
r1
−
VXũ(r1) +∆(X, ũ)Vψ̃ψ̃(r1)

∆(X, ũ)
, (49)

where

∆(X, ũ) =
∫ ∞

0

r′2dr′X(r′)ũ(r′), (50)

VXũ(r1) =
4
r1

∫ r1

0

r′2dr′X(r′)ũ(r′)

+
∫ ∞
r1

r′2dr′X(r′)
4
r′
ũ(r′), (51)

Vψ̃ψ̃(r1) =
2
r1

∫ r1

0

r′2dr′ψ̃(r′)ψ̃(r′)

+
∫ ∞
r1

r′2dr′ψ̃(r′)
2
r′
ψ̃(r′), (52)

X(r3) =
(
T (r3) + k2

)
ũ(r3) (53)

= V S(r3)ũ(r3) (54)

and

εdt = εbt +
∆(X,X)−∆

(
X,

2
r′
ũ

)
+ c1

∆(X, ũ)
− c2. (55)

where

c1 =
∫
r2
2dr2r2

3dr3ψ̃2(r2)
1
r23

X(r3)ũ(r3) (56)

and

c2 =
∫ ∞

0

r′2dr′ψ̃(r′)
(

+T (r′)− 4
r′

)
ψ̃(r′). (57)

It has been difficult to show the conditions un-
der which methods for treating scattering problems will
provide bounds on the phase shift. The Kohn and
Hulthen [29] variational methods do not guarantee phase
shift bounds at positive nonzero energies. The lack of a
bound property has been demonstrated by Schwartz [22]
by performing extensive calculations of the scattering of
electrons and positrons from hydrogen. Percival [18] con-
sidered this problem from another point of view based on
the famous Rayleigh-Ritz method that has been very suc-
cessful in providing upper energy bounds for the bound
states. His results were suggestive but incomplete. The
proof of the rigorous bound was given in a new formula-
tion later [30,31]. The phase shift bound is a very desirable
feature which one would like to have in a computational
method, providing a criterion for determining the accu-
racy of the phase shift calculated. To accomplish these
goals, the open channels must be treated “exactly” by
continuous variation of functions, while the closed chan-
nels are treated by variation of the coefficients. Such a
method was introduced earlier [32–34].

The close coupling approximation (CCA) has the prop-
erty of providing phase shift bounds, but its convergence

Table 3. We display the phase shift values in radians for
the helium-positron scattering case calculated from the GHA
theory δGHA and the corresponding energies εbt, in units of
Rydberg, of the target helium function. Also displayed are
phase shifts calculated with various approximate forms for the
He function: (a) δZeff where the helium target function is hy-
drogenic with effective Zeff = 2 − 5/16; (b) δHF, where the
helium target function is of Hartree-Fock form [28]. The phase
shift given by McEachran et al. [36] is denoted by δpo where
they have performed polarized orbital calculations.

ka0 δZeff δHF δGHA εbt δpo

0.1 −0.0381 −0.0424 −0.0300 −5.699 0.0428
0.2 −0.0759 −0.0842 −0.0596 −5.699 0.0584
0.3 −0.1131 −0.1252 −0.0890 −5.698 0.0536
0.4 −0.1493 −0.1649 −0.1174 −5.698 0.0350
0.5 −0.1843 −0.2030 −0.1448 −5.698 0.0076
0.6 −0.2179 −0.2392 −0.1710 −5.697 −0.0248
0.7 −0.2500 −0.2735 −0.1958 −5.697 −0.05974

has turned out to be poor at low energy scattering because
of its inability to account for atomic distortion. This is due
to the fact that computationally only a finite number of
target eigenstates may be included. The inclusion of all
l = 0 target states, for example in the case of positron-
hydrogen scattering, results in a phase shift only slightly
better than the static approximation (retaining only the
1s state). An alternative method was devised to improve
the convergence of the CCA. It carries the name of pseudo-
state expansion [32]. This method is based on expansion
in target states but some of them are chosen for best con-
vergence rather than restricted to the target eigenstates.
It has also been shown [30,31] that this method produces
lower bounds on phase shifts.

We adopt the above method to account for atomic dis-
tortion in the present case. A pseudo-state of the form
rψp̄ ∼ r2(1 + r/2) exp(−λr) is employed [35]. When the
nonlinear parameter λ is varied, a quasi-bound property
is observed. It is not a rigorous-bound property because
the helium target function is known only approximately.

In Table 3 we present the phase shift values calculated
from the GHA theory and the corresponding energies of
the target helium function. These are compared with sev-
eral previous calculations in which various approximate
forms for the He function were used. As Table 3 shows, the
calculated phase shifts using different approximate forms
of the He function vary considerably. This is not surpris-
ing, since it has been shown [10] that the scattering phase
shifts depend critically on the approximate form used for
the target helium function. The present theory, however,
gives better results than that of effective Z and HF. As in
the e+ H and e−H case, the GHA proves to be effective
in converging to the correct value.

The GHA phase shifts in the single configuration ap-
proximation, δGHA are plotted in Figure 9 versus ka0.
They are then compared with the phase shifts obtained by
using the helium function in the Zeff approximation, δZeff ,
and in HF approximation, δHF, and the phase shift given
by McEachran et al. [36], δpo, which included a polarized
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Fig. 9. The positron-helium elastic scattering phase shift cal-
culated with the GHA (solid line) plotted as a function ka0.
This is compared with those obtained with the helium func-
tion in the HF approximation (dotted line) and in the Zeff

approximation (dashed line). The phase shift obtained with a
pseudo-state function corresponding to the target polarization
with the nonlinear parameter λ = 1 is shown (dashed-dotted
line). Also shown is the phase shift obtained with the nonlin-
ear parameter λ = 1.62 at ka0 = 0.6 (square symbol), which
agrees with the result of reference [36].

Fig. 10. The phase shift obtained with a pseudo-state function
plotted as a function of the non-linear parameter λ for the case
of ka0 = 0.6.

orbital. In their study, they evaluated the full adiabatic
polarization potential using a perturbative approach. The
GHA phase shift results obtained with pseudo-state func-
tion, ψp̄, is shown, corresponding to the target polariza-
tion with the nonlinear parameter λ = 1. This figure shows
that with the inclusion of one pseudo-state, a little more
than half of the polarization effects are recovered. This
again demonstrates its effectiveness as it converges toward
the value of McEachran et al. In order to show that this
theory obeys the quasi-bound property, we varied λ. Fig-
ure 10 shows the dependence of the phase shift on λ. Note
that the optimal phase shift, which occurs for λ ' 1.62,
closely approaches the value given by McEachran et al.
Although the target function is not exact, a potentially
important quasi-bound property [21] is observed.

Fig. 11. (a) The GHA helium orbital (solid line) compared
with that of HF (dotted line) and with Zeff (dashed line).
(b) The effective SCF potential for the helium bound elec-
tron (solid line) in the positron-helium scattering plotted at
ka0 = 0.6. This is compared with the proton-electron Coulomb
potentials with Z = 2 (dotted line) and Z = Zeff (dashed line).

The principal conclusion, as illustrated by the above
results, is that the present theory with the two key ansatz
works and produces reliable results when applied to col-
lision problems with targets that involve more than one
electron. The GHA in principle changes the original scat-
tering problem in the sense that the asymptotic bound-
ary conditions no longer need to be specified. At present
we can not pin-point reasons for the effectiveness of the
present formalism.

Interesting features are found with the use of the
present theory in this positron-helium case.

(1) In Figure 11a, the GHA He target function, the
Hartree-Fock wave function, and that of Zeff are plot-
ted for comparison. The GHA orbital function is close
to that of isolated helium, that is, the wave function
for the He orbital looks almost exactly like a hydro-
genic function. Apparently, this is due to the cancel-
lation between the static screening and an attractive
contribution from the amputated wave function term.



94 The European Physical Journal D

The bound state of the He orbital is however different
from that of Zeff and He HF result because the GHA
He orbital is pulled in considerably, due to the pene-
tration of the positron inside the helium cloud. This
is in qualitative agreement with the e+ H case.

(2) The SCF potential given in Figure 11b which gen-
erates the He orbital is different from the conven-
tional one, i.e., asymptotically the SCF potential is
a Coulomb field of charge +2.2e, not the charge 2e of
the helium core. This is again due to the penetration
of the positron.

More accurate forms of the helium function may give
more improved phase shift. In practice, this is done in an
arbitrary way by first deciding on the desired accuracy of
the scattering amplitudes. Then the target function used
has to be better than the desired accuracy of the scattering
amplitudes. In addition, at low energy more terms have to
be retained in the expansion to account for polarization in
order to improve the scattering part. Thus in the conven-
tional theories, the target part and the scattering part are
treated separately. In the present formalism, however, this
arbitrariness is lifted, and both the scattering wave func-
tion and the helium wave function are treated on equal
footing as they are determined in a fully self-consistent
way.

Summarizing the positron-helium elastic scattering
phase shift calculated with the GHA (solid line) is plotted
as a function of ka0 in Figure 9. This is compared with
those obtained with the helium function in the HF ap-
proximation (dotted line) and in the Zeff approximation
(dashed line). The phase shift obtained with a pseudo-
state function corresponding to the target polarization
with the nonlinear parameter λ = 1 is shown (dashed-
dotted line). Also shown is the phase shift obtained with
the nonlinear parameter λ = 1.62 at ka0 = 0.6.

6 Electron scattering from helium by GHF

The scattering of low energy electrons from a helium atom
requires the solution of a three electron problem. Theoret-
ically there are three sources of complications: firstly, the
Pauli exclusion principle due to the indistinguishability of
the electrons must be imposed. Next, the target function
of helium is needed to satisfy the asymptotic boundary
conditions, as was the case with the positron projectile, as
explained in Section 5. Finally, the necessity to account for
the distortion of the targets as represented primarily by
polarization effects. The GHF approach considered here,
with the full exchange effect, self-consistently and simul-
taneously calculates the target and scattering function.

In atomic units, the Schrödinger equation for a helium
atom and one free electron can be written as[
−
(
∇2

1 +∇2
2 +∇2

3

)
− 4
r1
− 4
r2
− 4
r3

+
2
r12

+
2
r13

+
2
r23
−E

]
Ψ(r1, r2, r3) = 0, (58)

Table 4. We display the phase shift values in radians for
the helium-electron scattering case calculated from the GHF
theory, δGHF, and the corresponding energies, εbt in units of
Rydberg, of the target helium function at ka0 = 0.2, 0.4, 0.6
and 1. where ka0 is the continuum wave number. Also displayed
are phase shifts calculated with various approximate forms for
the He function: (a) δZeff where the helium target function is
hydrogenic with effective Zeff = 2 − 5/16; (b) δHF where the
helium target function is of Hartree-Fock form. The phase shift
given by Pu [38] is denoted by δpo where they have performed
polarized orbital calculations.

ka0 δZeff δHF δGHF δpo εdt

0.4 2.553 2.559 2.563 2.606 −5.831
0.6 2.281 2.298 2.310 2.355 −5.823
0.8 2.026 2.085 2.107 2.133 −5.702
1.0 1.800 1.902 1.920 1.941 −5.689

where rij = |ri − rj | and where E is the total energy of
the scattering system.

The Pauli exclusion principle requires that the total
wave function for the system be antisymmetric in the in-
terchange of any two electrons. Since the target config-
uration forms a singlet spin state, only one orientation
of the scattering electron spin need to be considered. Fur-
thermore, since exchange is explicitly included, the atomic
orbitals must be properly paired with the wave function
for the scattering electron. From these considerations the
total wave function with total angular momentum L = 0
and total spin S = 1/2 quantum numbers describing the
scattering electron by a helium atom is written as

ΨL=0,S=1/2(r1, r2, r3) ' 1√
3

[
Φ(1, 2)ũ(3)S(1, 2)α(3)

+ Φ(1, 3)ũ(2)S(1, 3)α(2)

+ Φ(2, 3)ũ(1)S(2, 3)α(1)
]

(59)

where S is the singlet spin function

S(i, j) =
1√
2

(
α(i)β(j) − α(j)β(i)

)
. (60)

α and β are single electron spinors with projections ms =
1/2 and ms = −1/2 respectively, ũ is the wave function of
the scattering electron and Φ(n)(i, j) is the wave function
of the helium atom. First we consider the helium atom in
its ground state, i.e.,

Φ(i, j) = ψ̃(i)ψ̃(j). (61)

The radial differential equation for ũ is obtained by multi-
plying equation (58) by S(1, 2)ψ̃(r1)ψ̃(r2), then integrat-
ing over the radial coordinates r1 and r2 and all angles.
The radial differential equation for ψ̃ is similarly derived
by multiplying (58) by S(1, 2)ψ̃(r2)X(r3) then integrating
over the radial coordinates r2 and r3 and all the angles.
The ũ and ψ̃ equations are presented elsewhere [37].

In Table 4 and Figure 12 we have presented the calcu-
lated phase shift values obtained from the present formal-
ism. Also presented for comparison are several previous
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Fig. 12. The electron-helium elastic scattering phase shift cal-
culated with the GHF (solid line) plotted as a function of the
continuum wave number ka0. This is compared with those
obtained with the helium function in the HF approximation
(dashed line) and in the Zeff approximation (dotted line).

calculations in which various approximate forms for the
He function were used.

In Figure 13a, we compare the GHF He target function
with the Hartree-Fock wave function. Unlike the e + He
case, the He function seems to be identical to the HF val-
ues. This may be understood from the exchange in the
role of the inner and the outer electrons as the incoming
electron penetrates the He core. A similar phenomenon
was also seen in the e − H case, although, the function
is somewhat pushed out. In Figure 13b, the GHF effec-
tive potential seen by the bound state function is shown
at ka0 = 0.6. It is then compared with that obtained in
Zeff and HF approximations. We note that this effective
potential is mildly energy dependent.

As Table 4 shows, only small differences (< 5%) are
found between the computed phase shifts in the Zeff ap-
proximation, δZeff , in HF approximation, δHF, and the
GHF phase shifts δGHF. This indicates that the calculated
phase shifts are rather insensitive to the choice of the tar-
get state wave function. Nevertheless, the GHF results are
closer to those of Pu et al. [38], where the polarized or-
bital method was used to account for the full polarization
induced in the target. This is illustrated in Figure 13a and
indicates that the GHF helium function already contains
a sizeable polarization effect.

In conclusion, we have demonstrated that the present
formalism GHF proves to be effective. This clearly indi-
cates that the WAC is strong enough to lead to the correct
boundary condition even in this case. The amputated wave
function carries much of the relevant physics information
that is contained in the scattering function u. More pre-
cisely, the dynamics carried by the u is in the amputated
function and not so much in the long range tail of u. Thus,
we have shown for the first time that a self-consistent field
approach can be employed in treating scattering systems
other than hydrogen.

Fig. 13. (a) The 1s orbital of the helium obtained with GHF
(solid line) at ka0 = 0.6 compared with that of the HF (dotted
line) and with the simple Zeff (dashed line). (b) The effective
SCF potential for the helium bound electron (solid line) in
the electron-helium scattering plotted at ka0 = 0.6. This is
compared with the proton-electron Coulomb potentials with
Z = 2 (dotted line) and Z = Zeff (dashed line).

7 Conclusion

The generalized SCF theory introduced in this work puts
forth two critical ansatz which required validation. These
two key ansatz are the weak asymptotic condition (WAC)
which replaces the usual strong asymptotic condition and
the amputated wave function (AWF), allowing a fully self
consistent approach for the first time. The strong asymp-
totic condition requires a knowledge of the exact target
wave function which is known exactly in the case of the
hydrogen atom. For target systems with more than one
electron, this can only be met in an approximate form.
This introduces a certain amount of arbitrariness in cal-
culating the phase shifts, because the calculation of the
target state is decoupled from the scattering problem and
is treated on completely different footing. The phase shift
can be sensitive to the choice of the target wave func-
tion and its accuracy criteria are not known. The WAC
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together with AWF removes this arbitrariness by relax-
ing the asymptotic condition in such a way that an SCF
approach is possible in which both the target and scat-
tering wave function are treated on equal footing. This
theory must be validated, however, since it relies heavily
on these two ansatz which fundamentally change the usual
way of dealing with scattering systems.

In validating the theory carried out in the present
work, we chose the simplest possible non-trivial system
for which exact data are available for comparisons. We
study the single channel elastic scattering of positrons by
hydrogen target below the positron pick-up threshold and
electron below the first excitation threshold. In both these
cases, it has been shown that the ansatz are valid and ef-
fective. Convergence to the strong asymptotic condition
was attained. In the case of positron-hydrogen scattering,
the GHA (without exchange) approximate target func-
tion contained information which has never been seen be-
fore due to the emergence of a self-consistent potential for
the target. The GHA potential, as seen by the electron,
is roughly twice the Coulomb potential. This is due to
the fact that when the positron penetrates into the inner
region of the electron orbit, the target electron sees the
Coulomb field of two positive charged particles. The man-
ifestation of this effect is that approximate target wave
function was shifted to small r region, and this shift was
energy dependent. The approximate target wave function
and corresponding energy were close to that of hydrogen,
indicating that the WAC, although not directly used in
the determination of the target orbitals, still put sufficient
constraint on the system to lead to the correct answer. In
addition, phase shifts from the present theory were much
improved in comparison to those obtained by including all
the s virtual excited states. We have further shown that,
as more configurations are added, the approximate tar-
get wave functions and corresponding energies and phase
shifts approach those of all s values and the exact hy-
drogen atom. This is the main results of this paper. We
accounted for polarization by using the method of pseudo-
states and recovered most of the long range effects. This
demonstrated the validity of the ansatz for this case.

The physics in the case of electron-hydrogen scatter-
ing is qualitatively different. Unlike the positron-hydrogen
case, the GHF approximate target function was very close
to the exact one but was slightly pushed or shifted to large
r region. This phenomenon is due to the exchange effects
where the role of the core and scattering electrons are in-
terchanged as the scattering electron penetrates the core
orbit. The results on the phase shift are comparable to the
CCA when multiconfiguration mixing was applied. This is
again a good indication that the ansatz are sound. In the
triplet case, the effect of polarization is negligible, but in
the singlet case, we were able to account for about 80%
of the polarization, by retaining three terms in the wave
function expansion. We did not further pursue this point
since our objective was to demonstrate the validity of the
ansatz in this theory. Improving upon the phase shifts can
be realized by performing a more extensive multiconfigu-
ration calculation, as in the bound case.

The satisfactory results generated from the positron-
hydrogen and electron-hydrogen scattering problems pro-
vided the basis to extend the study more complex
systems. We examined low energy positron and electron
scattering from helium. Unlike other theories where the
exact asymptotic condition cannot be imposed and some
arbitrary accuracy are needed, the asymptotic conditions
in this theory are determined in a self-consistent way. We
treat the helium and the scattering wave function in a
fully self-consistent fashion as was done in the positron-
hydrogen and electron-hydrogen case.

We have found some interesting qualitative as well as
quantitative features in the case of positron-helium scat-
tering. The SCF potential which generates the He orbital
is different from the conventional one. Asymptotically, the
SCF potential is a Coulomb field of charge +2.2e, not the
charge 2e of the helium core. Unlike the positron-hydrogen
case, there is a partial screening due to the two electrons
when the positron penetrates the helium core region. Nev-
ertheless, the GHA orbital function is close to that of iso-
lated helium. Apparently, this is due to the cancellation
between the static screening and an attractive contribu-
tion from the amputated wave function term. The bound
state of the helium orbital is however different from that of
Zeff and the helium wave function of HF result because the
GHA helium orbital is pulled in considerably, due to the
penetration of the positron inside the helium cloud. This is
in qualitative agreement with the positron-hydrogen case.

Another important feature that has emerged from this
work is that of the quasi-bound property for composite
target as in the CCA. By varying a non-linear parameter
in a pseudo-state, we have observed that the quasi-bound
property [23] holds for this system. This further indicates
potential applicability of the theory.

In the case of electron-helium scattering, where the tar-
get function occupies a singlet state, our results did not
show a substantial improvement when compared to HF
and that of Z-effective. This shows that the calculated
phase shifts are rather insensitive to the choice of the tar-
get state wave function. The GHF results are closer to the
result of Pu et al. [38], where the full polarization effects
were included via an extensive perturbative adiabatic ap-
proach. We have shown that the GHF helium function
is almost identical to the HF wave function of the iso-
lated helium. Unlike the positron-helium scattering case,
the exchange seems to reduce the polarization effect on
the target atom. This is in agreement with other previ-
ous calculations [28]. The GHF helium target wave func-
tion is slightly pushed out. In addition, the GHF effective
potential seen by the bound state function is mildly en-
ergy dependent, resulting in the kinetic energy-dependent
binding energies.

Based on the above discussion, we have demonstrated
that the two key ansatz, WAC and AWF, produce valid
results. The amputated wave function seems to carry all
of the relevant physics information that is contained in the
scattering function. More precisely, the dynamics carried
by the scattering function is in the amputated function
and not in the long range tail of the scattering function.
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The result of the analysis presented in this paper will
be the foundation on which the next extension of the
GSCF theory to ionization will be based. Thus the effec-
tiveness of the WAC and the convergence of the theory
under multi-configuration mixing as described here are
essential in such extensions. As originally envisaged, the
GSCF approach can not only combine the conventional
HF procedures for the bound configurations to scattering,
but also treat the ionization problem in a natural way in
terms of the AWF; we can introduce as many AWF’s as
the number of continuum electrons present.
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